↳ ITRS
↳ ITRStoIDPProof
z
if1(TRUE, x, y) → h(x, y)
h(x, y) → if2(>@z(x, y), x, y)
if2(FALSE, x, y) → f(x, y)
if2(TRUE, x, y) → 0@z
if1(FALSE, x, y) → 0@z
f(x, y) → if1(>@z(x, y), x, y)
if1(TRUE, x0, x1)
h(x0, x1)
if2(FALSE, x0, x1)
if2(TRUE, x0, x1)
if1(FALSE, x0, x1)
f(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
if1(TRUE, x, y) → h(x, y)
h(x, y) → if2(>@z(x, y), x, y)
if2(FALSE, x, y) → f(x, y)
if2(TRUE, x, y) → 0@z
if1(FALSE, x, y) → 0@z
f(x, y) → if1(>@z(x, y), x, y)
(0) -> (2), if ((x[0] →* x[2])∧(y[0] →* y[2])∧(>@z(x[0], y[0]) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(x[1] →* x[0]))
(2) -> (3), if ((y[2] →* y[3])∧(x[2] →* x[3]))
(3) -> (1), if ((x[3] →* x[1])∧(y[3] →* y[1])∧(>@z(x[3], y[3]) →* FALSE))
if1(TRUE, x0, x1)
h(x0, x1)
if2(FALSE, x0, x1)
if2(TRUE, x0, x1)
if1(FALSE, x0, x1)
f(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (2), if ((x[0] →* x[2])∧(y[0] →* y[2])∧(>@z(x[0], y[0]) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(x[1] →* x[0]))
(2) -> (3), if ((y[2] →* y[3])∧(x[2] →* x[3]))
(3) -> (1), if ((x[3] →* x[1])∧(y[3] →* y[1])∧(>@z(x[3], y[3]) →* FALSE))
if1(TRUE, x0, x1)
h(x0, x1)
if2(FALSE, x0, x1)
if2(TRUE, x0, x1)
if1(FALSE, x0, x1)
f(x0, x1)
(1) (F(x[0], y[0])≥NonInfC∧F(x[0], y[0])≥IF1(>@z(x[0], y[0]), x[0], y[0])∧(UIncreasing(IF1(>@z(x[0], y[0]), x[0], y[0])), ≥))
(2) ((UIncreasing(IF1(>@z(x[0], y[0]), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(IF1(>@z(x[0], y[0]), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(IF1(>@z(x[0], y[0]), x[0], y[0])), ≥))
(5) (0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(IF1(>@z(x[0], y[0]), x[0], y[0])), ≥))
(6) (x[3]=x[1]∧y[3]=y[1]∧>@z(x[3], y[3])=FALSE∧y[1]=y[0]∧x[1]=x[0] ⇒ IF2(FALSE, x[1], y[1])≥NonInfC∧IF2(FALSE, x[1], y[1])≥F(x[1], y[1])∧(UIncreasing(F(x[1], y[1])), ≥))
(7) (>@z(x[3], y[3])=FALSE ⇒ IF2(FALSE, x[3], y[3])≥NonInfC∧IF2(FALSE, x[3], y[3])≥F(x[3], y[3])∧(UIncreasing(F(x[1], y[1])), ≥))
(8) (y[3] + (-1)x[3] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1])), ≥)∧-1 + (-1)Bound + y[3] + (-1)x[3] ≥ 0∧(2)y[3] + (-2)x[3] ≥ 0)
(9) (y[3] + (-1)x[3] ≥ 0 ⇒ (UIncreasing(F(x[1], y[1])), ≥)∧-1 + (-1)Bound + y[3] + (-1)x[3] ≥ 0∧(2)y[3] + (-2)x[3] ≥ 0)
(10) (y[3] + (-1)x[3] ≥ 0 ⇒ -1 + (-1)Bound + y[3] + (-1)x[3] ≥ 0∧(2)y[3] + (-2)x[3] ≥ 0∧(UIncreasing(F(x[1], y[1])), ≥))
(11) (x[3] ≥ 0 ⇒ -1 + (-1)Bound + x[3] ≥ 0∧(2)x[3] ≥ 0∧(UIncreasing(F(x[1], y[1])), ≥))
(12) (x[3] ≥ 0∧y[3] ≥ 0 ⇒ -1 + (-1)Bound + x[3] ≥ 0∧(2)x[3] ≥ 0∧(UIncreasing(F(x[1], y[1])), ≥))
(13) (x[3] ≥ 0∧y[3] ≥ 0 ⇒ -1 + (-1)Bound + x[3] ≥ 0∧(2)x[3] ≥ 0∧(UIncreasing(F(x[1], y[1])), ≥))
(14) (x[0]=x[2]∧y[0]=y[2]∧x[2]=x[3]∧y[2]=y[3]∧>@z(x[0], y[0])=TRUE ⇒ IF1(TRUE, x[2], y[2])≥NonInfC∧IF1(TRUE, x[2], y[2])≥H(x[2], y[2])∧(UIncreasing(H(x[2], y[2])), ≥))
(15) (>@z(x[0], y[0])=TRUE ⇒ IF1(TRUE, x[0], y[0])≥NonInfC∧IF1(TRUE, x[0], y[0])≥H(x[0], y[0])∧(UIncreasing(H(x[2], y[2])), ≥))
(16) (x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(H(x[2], y[2])), ≥)∧0 ≥ 0∧-1 + (-2)y[0] + (2)x[0] ≥ 0)
(17) (x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(H(x[2], y[2])), ≥)∧0 ≥ 0∧-1 + (-2)y[0] + (2)x[0] ≥ 0)
(18) (x[0] + -1 + (-1)y[0] ≥ 0 ⇒ -1 + (-2)y[0] + (2)x[0] ≥ 0∧(UIncreasing(H(x[2], y[2])), ≥)∧0 ≥ 0)
(19) (y[0] ≥ 0 ⇒ 1 + (2)y[0] ≥ 0∧(UIncreasing(H(x[2], y[2])), ≥)∧0 ≥ 0)
(20) (y[0] ≥ 0∧x[0] ≥ 0 ⇒ 1 + (2)y[0] ≥ 0∧(UIncreasing(H(x[2], y[2])), ≥)∧0 ≥ 0)
(21) (y[0] ≥ 0∧x[0] ≥ 0 ⇒ 1 + (2)y[0] ≥ 0∧(UIncreasing(H(x[2], y[2])), ≥)∧0 ≥ 0)
(22) (H(x[3], y[3])≥NonInfC∧H(x[3], y[3])≥IF2(>@z(x[3], y[3]), x[3], y[3])∧(UIncreasing(IF2(>@z(x[3], y[3]), x[3], y[3])), ≥))
(23) ((UIncreasing(IF2(>@z(x[3], y[3]), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(24) ((UIncreasing(IF2(>@z(x[3], y[3]), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(25) ((UIncreasing(IF2(>@z(x[3], y[3]), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(26) (0 = 0∧(UIncreasing(IF2(>@z(x[3], y[3]), x[3], y[3])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
POL(IF2(x1, x2, x3)) = -1 + x3 + (-1)x2
POL(TRUE) = -1
POL(IF1(x1, x2, x3)) = -1 + (-1)x3 + x2
POL(FALSE) = -1
POL(F(x1, x2)) = -1 + (-1)x2 + x1
POL(undefined) = -1
POL(H(x1, x2)) = -1 + x2 + (-1)x1
POL(>@z(x1, x2)) = -1
IF1(TRUE, x[2], y[2]) → H(x[2], y[2])
IF2(FALSE, x[1], y[1]) → F(x[1], y[1])
F(x[0], y[0]) → IF1(>@z(x[0], y[0]), x[0], y[0])
IF2(FALSE, x[1], y[1]) → F(x[1], y[1])
H(x[3], y[3]) → IF2(>@z(x[3], y[3]), x[3], y[3])
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(2) -> (3), if ((y[2] →* y[3])∧(x[2] →* x[3]))
(0) -> (2), if ((x[0] →* x[2])∧(y[0] →* y[2])∧(>@z(x[0], y[0]) →* TRUE))
if1(TRUE, x0, x1)
h(x0, x1)
if2(FALSE, x0, x1)
if2(TRUE, x0, x1)
if1(FALSE, x0, x1)
f(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(1) -> (0), if ((y[1] →* y[0])∧(x[1] →* x[0]))
(3) -> (1), if ((x[3] →* x[1])∧(y[3] →* y[1])∧(>@z(x[3], y[3]) →* FALSE))
if1(TRUE, x0, x1)
h(x0, x1)
if2(FALSE, x0, x1)
if2(TRUE, x0, x1)
if1(FALSE, x0, x1)
f(x0, x1)